Phase 1 Study of mRNA-2752, a Lipid Nanoparticle Encapsulating mRNAs Encoding huOX40L, IL-23, and IL-36γ Intratumoral (iTu) Injection +/- Durvalumab in Advanced Solid Tumors and Lymphoma

1. Sarah Cannon Research Institute / Florida Cancer Specialists, Sarasota, FL; 2. University of Rochester Medical Center, Aurora, CO; 3. Henry Ford Hospital, Detroit, MI; 4. Robin Medical Center, Tel Aviv, Israel; 5. Tennessse Oncology, PULC, Nashville, TN; 6. The University of Chicago, Chicago, IL; 7. Oregon Health and Science University, Portland, OR; 8. University of Rochester, Rochester, NY; 9. Rambam Medical Center and Technion - Israel Institute of Technology, Haifa, Israel; 10. Yale School of Medicine, New Haven, CT; 11. The Cleveland Clinic Foundation, Cleveland, OH; 12. Tisch Cancer Institute - Icahn School of Medicine at Mount Sinai, New York City, NY; 13. Moderna Inc., Cambridge, MA; 14. Massachusetts General Hospital, Boston, MA

Background

- **mRNA-2752** is a novel mRNA-based therapeutic encoding OX40L, IL-23 and IL-36γ pro-inflammatory cytokines.
- Expression of pro-inflammatory cytokines within a treated tumor along with T-cell co-stimulation mediates the tumor microenvironment (TME) to allow a more robust immune response.

Study Design

- **Objectives:**
 1. Assess the safety and tolerability of mRNA-2752 +/- durvalumab.
 2. Characterize the pharmacokinetics of mRNA-2752 +/- durvalumab.
 3. Characterize protein expression from introduced mRNAs and biomarkers in tumors.
 4. Assess preliminary anti-tumor activity in select expansion cohorts of TME, HNSCC, NHL, urothelial carcinoma, and immune checkpoint-refractory melanoma and NSCLC.

Clinical Efficacy

- **Pharmacokinetic-Pharmacodynamic Modeling**
 - Pro-inflammatory cytokines, including IFN-γ, TNF-α, IL-23, and OX40L mRNAs.
 - Durable PRs seen in a PD-L1-low squamous-cell bladder cancer patient, and a DLBCL after progression on CAR-T.
 - Median IL-23 plasma levels maintained at < 1 ng/mL with dose ranges up to 8 mg supports the therapeutic goal of ITu mRNA-2752 given as monotherapy and in combination with durvalumab. The recommended dose for expansion (RDE) is up to 8 mg mRNA-2752 + durvalumab.

Conclusions

- mRNA-2752 given as monotherapy and in combination with durvalumab is tolerable at all dose levels studied.
- The recommended dose for expansion (RDE) is up to 8 mg mRNA-2752 + durvalumab.
- Median IL-23 plasma levels maintained at ~1 ng/mL with dose ranges up to 8 mg supports the therapeutic goal of ITu mRNA-2752 given as monotherapy and in combination with durvalumab.
- Durable PRs seen in a PD-L1-low squamous-cell bladder cancer patient, and a DLBCL after progression on CAR-T.
- Treatment response of the injected lesion was seen in a melanoma patient progressed on pembrolizumab and T-VEC.
- Durable PRs seen in a PD-L1-low squamous-cell bladder cancer patient, and a DLBCL after progression on CAR-T.
- Treatment response of the injected lesion was seen in a melanoma patient progressed on pembrolizumab and T-VEC.
- Evidence of immunomodulation/expected pharmacodynamics in the TME of both injected and un-injected lesions, in both monotherapy and combination cases, as indicated by increases in pro-inflammatory cytokines, IL-23, PD-L1 levels (marker of interferon signaling), and T-cell induced (IL-23) and transcriptional signature score, with greatest changes observed in patients with clinical benefit.
- Pro-inflammatory cytokines, including IFN-γ, are predominantly transiently elevated post-monotherapy treatment, peaking at 24 hours post-treatment, trend toward further elevated levels with a spike of cytokines, including TNF-α in combination with durvalumab.
- PD-1/PD-L1 modeling supports ITu dosing which is being explored in cutaneous melanoma in the neoadjuvant setting.
- Exenatide is ongoing in expansion cohorts of TNBC, urothelial carcinoma, lymphoma, and immune-checkpoint inhibition-refractory melanoma and NSCLC.

References