Interleukin 12 (IL-12) (MEDI1191)

Last program update: May 6, 2021

Phase 1 study of MEDI1191 ongoing; study run by AstraZeneca
Preliminary data from Phase 1 presented at the ESMO Targeted Anticancer Therapies Virtual Congress in March 2021
mRNA-encoding IL-12 (MEDI1191)
mRNA-encoded cytokine to activate tumor microenvironment
IL-12 (MEDI1191) overview

Powerful immunomodulatory cytokine well-suited for local delivery

Species: Mouse

- IL-12: potent immune modulator typically associated with a type 1 immune response and production of interferon-gamma

- Clinical development of systemically administered recombinant IL-12 has been hampered by systemic toxicity

- We have demonstrated well-tolerated intratumoral doses of IL-12 mRNA induce complete responses in multiple mouse models of cancer, exert abscopal effects on distal tumors, and yield protective immunity

- Clear rationale for the combination of IL-12 and PD-1/PD-L1 blockade

Modernat concept: Intratumorally-administered mRNA encoding IL-12 to activate tumor microenvironment
Preliminary safety, antitumour activity and pharmacodynamic results of the Human Intratumoral Immunotherapy (HIT-IT) trial of MEDI1191 (mRNA IL-12) in patients with advanced solid tumours and superficial lesions

Omid Hamid, MD

Translational Research & ImmunoOncology
The Angeles Clinic and Research Institute

Omid Hamid1, Matthew D. Hellmann2, Benedito A. Cameiro3, Thomas Marron4, Vivek Subbiah5, Inderjit Mehmi1, Jim Eyles6, Vincent Dubois6, Benjamin Ridgway7, Oday Hamid7, Amaya Gascó Hernández2

1Medical Oncology, The Angeles Clinic and Research Institute, Los Angeles, CA, USA; 2Memorial Sloan Kettering Cancer Center, New York, NY, USA; 3Lifespan Cancer Institute, Brown University, Providence, RI, USA; 4Icahn School of Medicine at Mount Sinai, New York, NY, USA; 5MD Anderson Cancer Center, Houston, TX, USA; 6R&D Oncology, AstraZeneca, Cambridge, UK; 7R&D Oncology, AstraZeneca, Gaithersburg, MD, USA
Declaration of interests

Omid Hamid, MD

Consulting/Advisory Boards
Aduro, Akeso, Amgen, BeiGene, BioAtla, Bristol Myers Squibb, Roche Genentech, GlaxoSmithKline, Immunocore, Idera, Incyte, Janssen, Merck, NextCure, Novartis, Pfizer, Sanofi/Regeneron, Seattle Genetics, Tempus, Zelluna

Speakers’ Bureaus
Bristol Myers Squibb, Novartis, Pfizer, Sanofi/Regeneron

Contracted Research (For Institution)
Arcus, Aduro, Akeso, Amgen, BioAtla, Bristol Myers Squibb, CytomX, Exelixis, Roche Genentech, GlaxoSmithKline, Immunocore, Idera, Incyte, Iovance, Merck, Moderna, Merck-Serono, NextCure, Novartis, Pfizer, Sanofi/Regeneron, Seattle Genetics, Torque, Zelluna
MEDI1191 (IL-12 mRNA) promotes antitumour immunity via multiple mechanisms

- IL-12 mRNA uptake, translation & IL-12 release
- Tumour Cell Killing
- Tumour Cell
- IL-12
- IL-12 receptor
- NK cell
- ACTIVATION
- PD-L1 (tumor / leukocytes)
- (CXCL10) T-Cell Recruitment
- Lipid nanoparticle containing IL-12 mRNA
- Tumour macrophages/dendritic cells
- IFN-γ
- IFN-γ receptor
- Antigen Presentation
- CD4+/CD8+ T cell
- Antigen-presenting cell

CD, cluster of differentiation; IFNγ, interferon gamma; IL-12, interleukin-12; mRNA, messenger ribonucleic acid; NK, natural killer.
Dosing scheme

Part 1A Sequential
MEDI1191 + durvalumab

- **Screening**
- MEDI1191 IT dosing
- MEDI1191 IT dosing
- Durvalumab IV infusion
- Durvalumab IV infusion
- Durvalumab IV infusion

Biopsy

Day -28
Day 1
Day 22
Day 43
Day 71
Day 99

DLT assessment
Disease assessment and biopsy

Part 1B and 1D Concurrent
MEDI1191 + durvalumab

- **Screening**
- MEDI1191 + durvalumab
- MEDI1191 + durvalumab
- MEDI1191 + durvalumab
- Durvalumab
- MEDI1191 + durvalumab

Biopsy

Day -28
Day 1
Day 29
Day 57
Day 85
Day 113

DLT assessment
Disease assessment and biopsy

D Q4W

MEDI1191 Q8W
Study design

Part 1 (Escalation)

Part 1A
- Sequential M+D dose level 1 C/SC lesions
- Sequential M+D dose level 2 C/SC lesions
- Sequential M+D dose level 3 C/SC lesions
- Sequential M+D dose level 4 C/SC lesions
- Sequential M+D dose level 5 C/SC lesions
- Sequential M+D dose level 6 C/SC lesions

Part 1B
- Concurrent M+D C/SC lesions
- Concurrent M+D C/SC lesions
- Concurrent M+D C/SC lesions
- Concurrent M+D Deep-seated lesions

Part 1D
- Concurrent M+D Deep-seated lesions

Part 2 (Expansion)

Other expansion cohorts will be based on efficacy

- Concurrent MEDI1191 + durvalumab in NSCLC (C/SC/supraclavicular) n=10
- Concurrent MEDI1191 + durvalumab in NSCLC (deep-seated) n=30

Key eligibility criteria

- ≥1 C/SC lesion or ≥2 deep-seated lesions suitable for IT injection, and ≥1 noninjected lesion measurable by RECIST v1.1
- Part 1: histologically or cytologically confirmed advanced solid tumours that have progressed on or are refractory to ≥1 line of standard systemic therapy for recurrent/metastatic disease*
- Part 2: histologically or cytologically confirmed locally advanced or metastatic NSCLC that has progressed on or is refractory to ≤2 lines of standard of care therapy for recurrent/metastatic disease, including anti-PD-1/PD-L1 and anti-CTLA-4 immunotherapy*

C, cutaneous; IT, intratumoural; NSCLC, non-small-cell lung cancer; PD-1, programmed cell death-1; PD-L1, programmed cell death ligand-1; RECIST, Response Evaluation Criteria in Solid Tumors; SC, subcutaneous
* A line of therapy is defined as systemic therapy given in the recurrent/metastatic setting with palliative intent.
Patient characteristics and treatment exposure

<table>
<thead>
<tr>
<th></th>
<th>As Treated Population (N=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, n (%)</td>
<td>Male / Female</td>
</tr>
<tr>
<td>Mean age (range), years</td>
<td>51.7 (18–68)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>7 (70.0)</td>
</tr>
<tr>
<td>Asian</td>
<td>1 (10.0)</td>
</tr>
<tr>
<td>Multiple/other</td>
<td>2 (20.0)</td>
</tr>
<tr>
<td>ECOG PS, n (%)</td>
<td>5 (50) / 5 (50)</td>
</tr>
<tr>
<td>Previous immunotherapy, n (%)</td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>6 (60.0)</td>
</tr>
<tr>
<td>Previous PD-1 inhibitor therapy</td>
<td>5 (50.0)</td>
</tr>
<tr>
<td>Previous PD-1 + CTLA-4 inhibitor combination therapy</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Tumor type, n (%)</td>
<td></td>
</tr>
<tr>
<td>Head and neck squamous cell carcinoma</td>
<td>2 (20.0)</td>
</tr>
<tr>
<td>Melanoma</td>
<td>2 (20.0)</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>1 (10.0)</td>
</tr>
<tr>
<td>Non-small-cell lung cancer</td>
<td>1 (10.0)</td>
</tr>
<tr>
<td>Gastric</td>
<td>1 (10.0)</td>
</tr>
<tr>
<td>Other</td>
<td>3 (30.0)</td>
</tr>
<tr>
<td>Median number of doses of MEDI1191 (range)</td>
<td>2.0 (1.0, 2.0)</td>
</tr>
<tr>
<td>Median number of doses of durvalumab (range)</td>
<td>8.0 (4.0, 21.3)</td>
</tr>
</tbody>
</table>

Data cutoff: 28 Jan 2021

ECOG PS, Eastern Cooperative Oncology Group performance status; HNSCC, head and neck squamous cell carcinoma; SD, standard deviation; WHO, World Health Organization

A line of therapy is defined as systemic therapy given in the recurrent/metastatic setting with palliative intent
Safety Summary: Part 1A MEDI1191 + durvalumab

- No DLTs
- No Grade ≥3 TRAEs or TR SAEs
- NR TESAEs: worsening constipation, oesophagitis, ascites (2x), gastric stenosis, sepsis

<table>
<thead>
<tr>
<th>Treatment-emergent grade 3/4 AEs (none treatment-related)</th>
<th>Dose level 1 n=4</th>
<th>Dose level 2 n=3</th>
<th>Dose level 3 n=3</th>
<th>Total N=10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with ≥1 event, n (%)</td>
<td>2 (50)</td>
<td>1 (33.3)</td>
<td>1 (33.3)</td>
<td>4 (40)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>1 (25)</td>
<td>0</td>
<td>0</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Ascites</td>
<td>1 (25)</td>
<td>0</td>
<td>1 (33)</td>
<td>2 (20)</td>
</tr>
<tr>
<td>Gastric stenosis</td>
<td>0</td>
<td>0</td>
<td>1 (33)</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Oesophagitis</td>
<td>0</td>
<td>0</td>
<td>1 (33)</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>1 (25)</td>
<td>0</td>
<td>0</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Hyponatraemia</td>
<td>1 (25)</td>
<td>0</td>
<td>0</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>1 (2.5)</td>
<td>0</td>
<td>0</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Sepsis</td>
<td>0</td>
<td>1 (33)</td>
<td>0</td>
<td>1 (10)</td>
</tr>
</tbody>
</table>
Part 1A Cohort 2: MEDI1191 induces pharmacodynamic changes in periphery and tumour consistent with proposed mechanism of action

Peripheral blood

<table>
<thead>
<tr>
<th>IL-12 (pg/mL)</th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 predose</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>D2</td>
<td>16</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>D3</td>
<td>16</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>D4</td>
<td>16</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>D5</td>
<td>16</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

IFNγ (fold change)

<table>
<thead>
<tr>
<th>IFNγ (fold change)</th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 predose</td>
<td>0.5</td>
<td>0.25</td>
<td>0.125</td>
</tr>
<tr>
<td>D2</td>
<td>16</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>D3</td>
<td>16</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>D4</td>
<td>16</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>D5</td>
<td>16</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

Tumour

Transcriptomics

<table>
<thead>
<tr>
<th>Gene</th>
<th>SCR D15</th>
<th>SCR D15</th>
<th>D15 D15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiogenesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tregs, T, IO, T3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTLA4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CXCL11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL12RB2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nkx2, T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CXCL9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CXCL10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GZMB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nkcells.Danaher.IO_T2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL12A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th1cells.Danaher.IO_T3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL12RB1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tcell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T, cell exhaustion, Med, IO, T4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDDC1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD8Tcells.Danaher.IO, T3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhausted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFNγ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Red box = PR in melanoma pt; Data cutoff: 28 Jan 2021
ECOG PD, day; IFNγ, interferon gamma; IL-12, interleukin-12; SCR, screening
Partial response #1: Case summary

- 55-year-old male; ECOG PS 1
- Stage IVa HNSCC; PD-L1 negative
- Low tumour mutation burden (<20 muts/Mb) by ctDNA
- 4 prior regimens including nivolumab
- Part 1A Cohort 1: 1 cycle of MEDI1191 and 5 cycles of durvalumab on study
- Injected lesion: right cervical lymph node (20 Sept, 2019)
- ~58.7% change in size of target (noninjected) lesions along with shrinkage of injected (nontarget) lesions after 1 cycle of MEDI1191 and 4 cycles of durvalumab

HRAS and PIK3CA driver mutations not detected at the last time point

ctDNA, circulating tumour DNA; HNSCC, head and neck squamous cell carcinoma; muts/Mb, mutations/megabase
Partial response #2: Case summary

- 63-year-old male; ECOG PS 0
- Stage IV anal melanoma; PD-L1 negative
- Low tumour mutation burden (<20 muts/Mb) by ctDNA
- 3 prior regimens including nivolumab + ipilimumab and pembrolizumab monotherapy
- Part 1A Cohort 2: 2 cycles of MEDI1191 and 6 cycles of durvalumab on study
- Injected lesion: Left buttock SC nodule (20 July and 12 Aug, 2020)

- 61.2% change in size of noninjected (target lesions) along with shrinkage of nontarget (injected) lesions after 2 cycles of MEDI1191 and before first durvalumab dose
Conclusions

- Ten patients with advanced solid tumors and superficial lesions have been enrolled.
- No dose-limiting toxicities; No ≥ grade 3 TRAEs.
- Two PRs have been observed [HNSCC and melanoma].
- Both responders were previously PD-1 +/- CTLA4-treated.
- Response in injected, local, and distant non-injected lesions.
- Melanoma PR seen early with MEDI1191 alone.
- Melanoma PR in correlative studies showed increase in IFN gamma, IL-12, and inflammatory transcriptome.
- Study ongoing, with the combination treatment to be tested in concurrent combination and in deep-seated lesions.
Acknowledgements

- The authors would like to thank the patients, their families and caregivers.

- Medical writing support was provided by Helen Kitchen of Ashfield MedComms, an Ashfield Health company, and was funded by AstraZeneca.

- This study (NCT03946800) was sponsored by AstraZeneca. Support of MEDI1191 development is provided in part through an ongoing collaboration with Moderna Inc.

- Contact email: ohamid@theangelesclinic.org

US Activated sites
- MKSCC: M. Hellmann
- MDACC: V. Subbiah
- UCSD: S. Patel
- Mt Sinai NYC: T. Marron
- USC: A. El-Khoueiry
- Brown (Lifespan): B. Carneiro
- Montefiore: S. Goel
- Angeles Clinic: O. Hamid
European Society for Medical Oncology (ESMO)
Via Ginevra 4, CH-6900 Lugano
T. +41 (0)91 973 19 00
esmo@esmo.org
Forward-looking statements

This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended including, but not limited to, statements concerning potential development candidate applications, development candidate activities, preclinical and clinical studies, regulatory submissions and approvals, risk management and estimates and forward-looking projections with respect to Moderna or its anticipated future performance or events. In some cases, forward-looking statements can be identified by terminology such as “may,” “should,” “expects,” “intends,” “plans,” “aims,” “anticipates,” “believes,” “estimates,” “predicts,” “potential,” “continue,” or the negative of these terms or other comparable terminology, although not all forward-looking statements contain these words. The forward-looking statements in this presentation are neither promises nor guarantees, and you should not place undue reliance on these forward-looking statements because they involve known and unknown risks, uncertainties and other factors, many of which are beyond Moderna’s control and which could cause actual results to differ materially from those expressed or implied by these forward-looking statements. These risks, uncertainties and other factors include, among others: preclinical and clinical development is lengthy and uncertain, especially for a new category of medicines such as mRNA, and therefore Moderna’s preclinical programs or development candidates may be delayed, terminated, or may never advance to or in the clinic; no mRNA drug has been approved in this new potential category of medicines, and may never be approved; mRNA drug development has substantial clinical development and regulatory risks due to the novel and unprecedented nature of this new category of medicines; and those described in Moderna’s most recent Annual Report on Form 10-K filed with the U.S. Securities and Exchange Commission (SEC) and in subsequent filings made by Moderna with SEC, which are available on the SEC’s website at www.sec.gov. Except as required by law, Moderna disclaims any intention or responsibility for updating or revising any forward-looking statements in this presentation in the event of new information, future developments or otherwise. These forward-looking statements are based on Moderna’s current expectations and speak only as of the date hereof.